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Two-dimensional percolation and cluster structure of the random packing of binary disks

D. He,* N. N. Ekere,* and L. Cai*
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~Received 22 October 2001; published 25 June 2002!

In this paper we study the short-range correlated percolation and the cluster structure of two-dimensional
~2D! random packing of binary disks with size ratiol in the range of 1–5. A Monte Carlo simulation model
is used to generate the configuration of random packing first. Then a from-neighbor-to-neighbor propagation
method is used to identify the number and sizes of the clusters. Results show that forl51 the percolation
thresholdpc lies between the square and triangular site percolation thresholds. Asl increases the percolation
thresholdpc ~the area fraction of small disks! decreases. To characterize the cluster structure at the percolation
threshold, we scale the cluster sizesc with the cluster radiusRassc}RD. The fractal dimensionD obtained lies
between 1.86 and 1.88 and is independent of the size ratiol. This value is in good agreement with the 2D
theoretical fractal dimension which is equal to 91/48.
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I. INTRODUCTION

The short-range correlated percolation process has b
extensively studied for more than half a century. This is d
to its effectiveness in solving problems in disordered syste
in a variety of scientific and engineering fields, such as
fluid flow in porous media, the forest fire spread, and
transportation network@1,2#. Perhaps the most important a
plication of the percolation process is in the study of t
physical properties and the phase transition of composite
terials@3–8#. A straightforward example is a binary compo
ite composed of electrical conductive elements and insu
ing elements. As the volume fractionp of the conductive
elements is lower than a critical value the composite beha
as an insulator. Asp approaches a critical valuepc the com-
posite experiences an insulating-to-conducting phase tra
tion. This is attributed to the formation of a cluster of th
conductive elements that spans the composite. The cri
valuepc is referred to as the percolation threshold.

Monte Carlo simulation technique is a powerful tool
solving the percolation problem and many simulation mod
have been developed@9–14#. In classical site percolation
models, each site of an ordered lattice, e.g., square, ho
comb, or triangle in two dimensions~2D!, and diamond or
simple cubic in 3D, is randomly occupied by a conducti
particle with probabilityp or by an insulating particle with
probability 12p. The main aim of the simulation is to fin
the percolation thresholdpc , the lowest volume fraction o
the conductive particles, at which the largest cluster of
conductive particles spans the entire simulation domain.
2D square lattice site percolation it has been obtained
many thatpc is about 0.593, and for triangular latticepc
50.50@1,2,12#. At percolation thresholdpc the cluster struc-
ture can be characterized by several geometrical parame
such as the cluster size and number, the cluster radius,
the correlation length. Near the percolation thresholdpc
some of the physical properties of a composite will obey
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universal lawC}(p2pc)
b, whereC represents a physica

property, such as the conductivity. The exponentb is insen-
sitive to the microstructure of the composite.

The above description implies that two assumptions
made in the classical percolation model. The first one is
ordered lattice, which means the positions of the particles
preknown, and what is not known is which particles are co
ductive. The second one is that all the particles have
same size. In practice, however, there are many disord
systems in which both the positions and sizes of the parti
are randomly distributed, such as the amorphous compo
and the compacts with two or more types of granular po
ders. It has been found for many years that, in a compac
the mixture of metallic powder and polymeric powder, low
electrical conductive percolation thresholdpc ~herepc is the
volume fraction of metallic powder! can be obtained by in-
creasing the particle size ratiol of the polymeric powder to
the metallic powder@15–17#. Understanding the effect ofl
on pc will allow material scientists to optimize the physic
properties by adjusting the compositions of the materia
such as conductive polymer@18#, adhesives@19#, and ceram-
ics @20#. A few analytical models have been developed
predict the effect ofl on the percolation thresholdpc of the
compacts with binary particles@15,17,21,22#. In the model
developed by Malliaris and Turner@15# it is assumed that
each large polymeric particle is covered by a monolayer
metallic particles. The percolation threshold predicted by t
model is significantly lower than that obtained by expe
ments. The other models are modifications of this mode
common assumption made in these models is the segreg
distribution of the metallic particles, which means that t
small metallic particles are only distributed in the neighb
hood regions of the surfaces of the large polymeric partic
Therefore, these models are only valid under the condit
l@1. Another shortcoming is that these models cannot p
vide the structure information in detail. Even with a hig
value ofl, aggregates of fine particles have been observe
the conductive adhesive@19#. Thus we may conjecture tha
in the compact of binary particles, ifl is not too far from
one, both large and small particles should be randomly
tributed without bias. The percolation problem of such s
tems has been rarely reported in the literature.
f
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FIG. 1. Random packings and
the largest clusterssmax: ~a! l
52, n52000 p50.480, smax

5731; ~b! l52, n52000, p
50.499,smax51286; ~c! l55, n
51500, p50.391,smax5609; ~d!
l55, n51500, p50.412, sc,max
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We have developed a Monte Carlo simulation model t
can be applied to investigate the percolation process of
and 3D random packing of binary particles and to charac
ize the cluster structure at the percolation thresholdpc . This
model completely differs from the continuum percolati
models @23–26# in which particles are allowed to overla
each other to form percolating clusters. In Sec. II we int
duce the simulation technique; in Sec. III we present
simulation results and discussion; and finally we summa
the conclusion of this study.

II. THE SIMULATION MODEL

The simulation model is composed of two parts. The fi
part is the generation of a 2D random packing of disks, a
the second part is the identification of clusters. For con
nience, we assign the diameter of the small disks to be
unit; then the diameter of large disks equals the size ratil.
The area fractionp of small disks is given by

p5
ns

ns1nll
2 , ~1!

wherens is the number of small disks, andnl is the number
of large disks. The total number of disksn5ns1nl . As l
51, the definition ofp is identical with that of the classica
site percolation models, which is the ratio of the occup
sites to the total sites. Thus we can compare the resu
random packing with the result of ordered lattice packing.
avoid confusion, it is necessary to point out that this defi
tion is different from that of the continuum percolatio
model, which is the ratio of the area of the total disks to
area covered by the disks.

For given values ofp, l, and the total number of disksn,
we randomly assignns , which is an integer nearest t
npl2/(11pl22p) obtained from Eq.~1!, small disks and
n2ns large disks. The initial positions of the disks within
square with initial area ofL2 are also randomly generate
that obey uniform distribution. The simulation is started w
a very high packing density
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4L2 . ~2!

thus there are many overlaps among the disks. Then a re
ation iteration is applied to reduce or eliminate the overla
After the relaxation iteration the disks are more uniform
distributed, and the mean overlap reduces to a stable va
According to the mean overlap value, the packing areaL2 is
expanded, which leads to the decrease in the packing de
F. By repeating the relaxation and expansion procedures
can finally obtain the overlap-free packing. Figure 1 show
few final configurations of the random packings with diffe
ent values ofp and l. In Fig. 1 each configuration only
involves 1500 or 2000 disks, which is only for the conv
nience of observation. Readers interested in details of
random packing model are referred to Ref.@27#. Statistic
tests show that, forl.1, the packing is random, homoge
neous, and isotropic although triangular orders exist in
scale of a few disk diameters that can be observed in Fig
For l51, previous studies showed that the random pack
densityF falls in the range of 0.82–0.89@28#, and that as the
packing density increases the equal disks intrinsically ten
the triangular orders; thus polycrystalline structures are m
likely to be attained than completely random structures@29#.
The packing density we obtained isF50.865, which is sig-
nificantly higher than the square packing densityF50.785
and lower than the triangular packing densityF50.907. In
the packing we also found that about 46% of the disks h
six nearest neighbors~the nearest neighbor number of tria
gular packing! compared with that only less than 13% in th
random packing withl.1. Therefore, it is suitable to clas
sify the packing we obtained forl51 to polycrystalline
structure.

Two steps are involved in the identification of the cluste
The first step is to count the nearest neighbors for each d
To do this we examine the center-to-center distance betw
any two disks of the same type to detect if they touch e
other. In the second step starting from an arbitrary seed
we count its neighbors and put them in a seed list; then
sequentially take the disks from the seed list and count t
neighbors, which are put in a new seed list. A disk may~and
4-2
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TWO-DIMENSIONAL PERCOLATION AND CLUSTER . . . PHYSICAL REVIEW E 65 061304
often! belong to the nearest neighbors of two or more see
and two seeds may also be of the nearest neighbors to
other. Thus to avoid any disk to be repeatedly counted, a
counting each disk for the first time we label it, and aft
ward we only count the unlabeled disks. By this from
neighbor-to-neighbor propagation we can identify all t
disks belonging to the same cluster. This process is sketc
in Fig. 2 in whichl51. The white and dark circles represe
the two types of disks, respectively, and we are concer
with the white circles only. The disk marked by 1 repr
sented the first seed, those marked by 2 are the nearest n
bors of the first seed, and their nearest neighbors are ma
by 3 and so on. By this process one can see that any
marked byi 11 is approached from one of those marked
i. One can also see that any disk belonging to this cluster
be counted and only counted once because we have labe
after it was counted for the first time. As all the disks belon
ing to the same cluster have been counted, we have the
of this clusters511n21n31•••1nm , whereni is number
of disks marked byi in Fig. 2. After finishing the counting o
one cluster we start from an arbitrary unlabeled disk~the
unmarked white circles in Fig. 2! to count the size of anothe
new cluster by the same process described above. Finall
can obtain the total number of clusters and their sizes in
random packing. Figure 1 also shows the largest clus
corresponding to the random packings. For each cluster
simply examine its horizontal and vertical spanning distan
to identify if it percolates the space covered by the disks
either one or in both directions.

III. RESULTS AND DISCUSSION

Applying the above Mont Carlo model we investigat
the effect ofl on the percolation thresholdpc and the struc-
tural properties of the clusters atpc of the random packing.

A. The percolation threshold

For l51, we generated three configurations with 10 0
20 000, and 40 000 disks. The aim of using different num
of disks is to examine the potential effect of the finite syst
sizes. For each configuration at a given value ofp we took

FIG. 2. Sketch of identification of clusters.
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500 samples and counted the percentageG8(p) of those in
which there exist percolating clusters. The values ofG8(p)
in vertical direction and in horizontal direction were counte
respectively, and them averaged. Forl.1, at each value ofp
we generated 40 configurations each involving 20 000 dis
Then we identified the cluster number and sizes in each c
figuration, and counted the percentageG8(p). In our simu-
lation the increment inp was 0.005, which allows reasonab
accurate estimation of the percolation threshold.

For finite-size systems at given occupancyp the probabil-
ity G(p) of the existence of percolating cluster has be
reported in several investigations@30–32#, which suggest
that at the percolation thresholdpc , in a given direction the
probability G(pc)→0.5 asL→`. Lee and Torquato studied
2D continuum percolation of uniform disks with rigid core
and penetrable shells, and their result also implicates tha
L.7 G(pc) approaches 0.5~see Fig. 3 in@33#!. Thus we
may conjecture thatG(pc) is independent of the packin
lattices. To verify the conjecture, we also simulated the s
percolation of square lattices with sizes of 1003100, 140
3140, and 2003200. At each value ofp we took 500
samples. Figure 3 shows the results of square lattice p
ings and random packings of equal disks. It is seen that
square lattices the curves nearly cross at the same poi
which G8(p) is about 0.5 andp is about 0.593, which is the
site percolation thresholdpc . For the random packings o
equal disks the trend similar to that of the square lattice
also be observed, that is atp just below 0.55 the values o
G8(p) with different sizes all approach 0.5. This supports t
conjecture that it is independent of the packing lattice that
the percolation thresholdpcG8(p), approaches 0.5. We ma
also conjecture that this relationship is applicable to the s
tems withlÞ1. Thus, corresponding toG8(p)50.5 we can
estimate the percolation thresholdpc as shown in Fig. 4.

Zallen @34# suggested that in the random packing of eq
spheres~disks in 2D!, as the packing densityF and the mean
nearest neighbor numberz increase the percolation thresho
pc decreases. Forl51, we know that for square packin
F50.785,z54, andpc50.593; and for triangular packing
F50.907,z56, andpc50.500. The packing density and th

FIG. 3. Effect of system size ofG8(p) ~equal disks!.
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D. HE, N. N. EKERE, AND L. CAI PHYSICAL REVIEW E65 061304
mean nearest neighbor number we obtained forl51 areF
50.865 andz54.87, respectively, both lying between that
the square and the triangular packings. Therefore, the pe
lation threshold should also lie between that of the squ
and triangular packings. The above argument suggests
the percolation thresholdpc50.55060.005 for random
packing is reasonable.

From Fig. 4 we can observe that the percolation thresh
pc decreases with the increase inl. Table I lists the values o
pc corresponding to the values ofl. The effect ofl on pc
obtained by this random packing model is in qualitati
agreement with that of the 3D segregation mod
@15,17,21,22#. We also observe that nearl51, the effect of
the increase inl on pc is more significant than that asl is far
from 1. For example, asl increases from 1 to 2, the decrea
in pc is about 0.065; while asl increases from 4 to 5, the
decrease inpc is only about 0.013. A reasonable explanati
may be given by the following argument. In a random pa
ing of binary disks, we may expect that the larger the sum
the perimeters of the small disks the higher the probab
for the small disks to form a percolating cluster. With t
same area of small disks and large disks that isnsp/4
5nlpl2/4, the sum perimeters of the small disks and
large disks arensp andnlpl, respectively, from which we
get the ratio of the sum perimeters of small disks to la
disks to bel. Thus, first we see that the ratio of the su
perimeters of small disks to large disks increases withl,
which leads to the decrease in the percolation thresholdpc of
the small disks. Second, as the size ratio increases froml to

FIG. 4. Effects ofl andp on G8(p).

TABLE I. Effects of disk size ratiol on percolation threshold
and on cluster structure.

l pc D a

1 0.550 1.874 3.649
2 0.485 1.872 3.438
3 0.437 1.879 3.308
4 0.413 1.864 3.245
5 0.400 1.861 3.104
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l11, the relative increase in the perimeter ratio is 1l,
which becomes insignificant at a large value ofl, therefore,
the decrease inpc also becomes insignificant. We may, fro
the above argument, speculate that there exists a limit opc
asl→`. However, we are unable to quantitatively estima
this limit from the results we have obtained.

Comparing the random packings and largest clusters
Fig. 1, we can observe that in the random packing there e
isolated clusters of small disks surrounded by the large di
and the lower thep the more the isolated clusters. Statisti
showed that at the percolation thresholdpc the largest clus-
ters averagely contain about 56% of the total small disks.
can also observe that in the largest clusters there exist
gling disks that do not carry the current when a poten
difference is applied at two opposite sides of the rand
packing.

As defined by Eq.~1!, the percolation thresholdpc is the
ratio of the area of small disks to the area of total disks. Atpc
we may also examine the effect ofl on the percolating spac
by defining another percolation thresholdpc8 as the ratio of
the area of the small disks to the area covered by the d
that is

pc85
pns

4L2 . ~3!

This definition is similar to that of the continuum percol
tion. Observing Eqs.~1!–~3!, we havepc85pcF, hereF is
the final random packing density atpc . F, pc , and pc8 as
functions ofl are shown in Fig. 5. One can observe that al
increasespc8 also decreases, which means that, with a lar
value of l, using less small disks can generate percolat
network.

To further examine the effect ofl and verify the above
results, forl52 we studied the percolation threshold of th
large disks. The area fraction of the large disks is given

p5
nll

2

ns1nll
2 . ~4!

Simulation results show thatpc lies between 0.650 and
0.660, and by the transformationpc85pcF we obtain thatpc8

FIG. 5. Effects ofl on the packing densityF, and on the per-
colation thresholdspc andpc8 .
4-4
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TWO-DIMENSIONAL PERCOLATION AND CLUSTER . . . PHYSICAL REVIEW E 65 061304
lies between 0.565 and 0.574. Comparing the values opc

and pc8 of the large disks with that of the small diskspc

50.485 andpc850.420 one can obviously see the significa
effect of the disk size ratiol on the percolation threshold. I
practice, such results may provide many benefits to the
sign of composites. By selectingl one may save the valuabl
metal component, reduce the mass density, adjust the
chanical, electrical and thermal properties of the compos

From the percolation thresholdspc obtained with different
system sizes, we can estimate the percolation thresholdspc`

of infinite system. For the random packings of equal dis
with different system sizes, see Fig. 3, we use the valuesp
corresponding to the percolation probabilitiesG8(p)
50.1,0.2,0.3,...,0.9, to calculate the widthD of the critical
transition region by the equation

D25^p2&2^p&2, ~5!

where^ & means average. Then we can determine the co
lation length exponentn from the scale

D}L21/n. ~6!

In the random packing, the values ofL corresponding ton
510 000, 20 000, and 40 000 are 95.3, 134.7, and 190.5
spectively. From Eqs.~5! and ~6!, we obtainn51.37. It is
close to the exact 2D correlation length exponent, 4/3. T
reasons make it impossible to determinen with l.1. The
first one is due to the small number of samples, 40 at e
point of p, which will give a poor result. The second is th
we fixed the system sizen to 20 000, thus, at givenl, L
decreases asp increases.n is believed to be a universal pa
rameter. Therefore, we usen54/3 to estimate the effect o
the finite system size on the percolation threshold. It is s
gested @31,35# that, with free boundary, the percolatio
thresholdpc based upon the crossing probability converg
to pc` of infinite system according to

pc2pc`}L2121/n5L27/4. ~7!

Note that Fig. 4 shows results withn540 000 forl51, and
n520 000 forl.1, thus the minimal value ofL is about 170
with l52. Therefore, the convergencepc2pc` is in the or-
der of 1024, which can be neglected as we estimatedpc to
the order of 1023. Renormalization-group and some oth
methods estimate the convergence in a very slow way
pc2pc`}L21/n. The fast convergence is given in@35# as
pc2pc`}L2221/n for square lattice with periodical bound
ary.

B. The fractal dimension

To examine the effect ofl on the cluster structure w
employ the cluster radiusR, which has been used by man
@1,23# and is defined as

2R25(
i j

di j
2

s2 , ~8!
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wheres is the cluster size, the number of disks belonging
the same cluster, anddi j is the distance between two disks.R
andL have the same dimension, which equals one. Near
percolation thresholdpc the cluster sizesc can be scaled with
the cluster radiusR as

sc}RD, ~p5pc ,sc@1!, ~9!

where the exponentD is called the fractal dimension. Perco
lation theory proves thatD is a universal parameter that it i
independent of the packing lattices, and in the limitL→`,
D591/4851.896 in 2D lattices, andD is approximately
equal 2.5 in 3D lattices@1#. Lorenz, Orgzali, and Heuer in
dicated that this universal law is also applicable to the c
tinuum percolation models of binary disks@23#. Thus, we
may conjecture that, in the random packing of binary dis
this universal law will also be tenable. At the percolatio
thresholds, as listed in Table I, for each value ofl, we cal-
culated the values ofR of all the clusters. Forl51 andl
55, the symbols in Fig. 6 show the relationship betwe
Ln(sc) and Ln(R) both are average values in the given i
tervals. To determine the fractal dimensionD, we applied
least-square-error regression to fit the data tosc5aRD in
which only the clusterssc.100 were taken into account. Th
values ofa andD corresponding to the values ofl are also
listed in Table I. Forl53, a andD are the averages of th
values obtained withp50.435 and 0.440, and forl54 they
are the averages of the values obtained withp50.410 and
0.415. First we can observe that for all values ofl, the clus-
ters have fractal dimensionD in the range of 1.861–1.880
andD is independent ofl. The values ofD obtained in our
simulation are in good agreement with the theoretical va
D51.896 of the ordered lattice percolation and with that
the continuum percolation models of binary disks@23#. This
agreement supports our conjecture that, at the percola
thresholdpc , the cluster dimensionD of the random packing
of binary disks obeys the universal law. We may also exp
that, in the limit L→`, D would approach the theoretica
value of 1.896.

Another important finding in our simulation is that, ob
serving Table I the parametera decreases with the increas

FIG. 6. Fractal dimensions of clusters at percolation thresho
4-5
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D. HE, N. N. EKERE, AND L. CAI PHYSICAL REVIEW E65 061304
in l. From the scaling equationsc5aRD we see that with
the same cluster sizesc , the decrease ina results in the
increase in the cluster radiusR as shown in Fig. 6. This
indicates that with the same sizesc , the cluster in the ran-
dom packing with higher size ratiol can span larger area. I
another words, to span the same area the cluster sizesc is
smaller with higherl than that with lowerl. This observa-
tion is identical with the fact that the percolation thresholdpc
decreases with the increase inl. Figure 6 shows the trend o
the divergence of the simulation values from the fitted val
for small and large clusters. As indicated by the conditi
Eq. ~9! is not applicable to small clusters. While the fini
packing areaL2 restricts the extension of the largest cluste
as shown in Fig. 1, which leads to the cluster radiusR to be
smaller than it should be in an infinite system.

IV. CONCLUSION

Monte Carlo study on the percolation and cluster struct
of the random packing of binary disks has been reported
this paper. Results showed that the disk size ratiol signifi-
cantly influences the percolation thresholdpc of the small
disks that the increase inl leads to the decrease inpc . For
l51, the packing density and the average number of
nearest neighbors in our study both lie between that of
y,

n,

nd

c

. E

06130
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square and triangular packings, which requires that the
colation threshold of the random packing must also lie
tween the percolation thresholds of the two ordered pa
ings. Our result fulfils this requirement, which supports o
conclusion about the effect ofl on pc . Cluster structure
characterization confirmed that, at percolation thresholdpc ,
the fractal dimensionD of the clusters is independent ofl
and is in good agreement with that of the classical perco
tion model and with the continuum percolation model. Th
may suggest that, as is found in classical percolation, n
the percolation threshold, the physical properties of the r
dom packing obey the universal lawc}(p2pc)

b, in which
the exponentb is insensitive to the details of the microstru
ture of the packing. The simulation results may provide b
efit in optimizing the physical properties of the composit
by adjusting the compositions, such as to gain good cond
tivity meanwhile still retaining the high resistance to wear
the conductive ceramics. The configurations generated
this model can be used to study the hopping transport p
lems in amorphous solids. With simple modification, th
model has been applied to 3D percolation. Further work
focusing on the identification and elimination of the tangli
disks in the percolating cluster. This will allow us to build u
an effective resistance network analogous to the percola
cluster.
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