PHYSICAL REVIEW E, VOLUME 65, 061304
Two-dimensional percolation and cluster structure of the random packing of binary disks
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In this paper we study the short-range correlated percolation and the cluster structure of two-dimensional
(2D) random packing of binary disks with size ratioin the range of 1-5. A Monte Carlo simulation model
is used to generate the configuration of random packing first. Then a from-neighbor-to-neighbor propagation
method is used to identify the number and sizes of the clusters. Results show that Tothe percolation
thresholdp, lies between the square and triangular site percolation thresholdsirkseases the percolation
thresholdp,. (the area fraction of small diskslecreases. To characterize the cluster structure at the percolation
threshold, we scale the cluster sizewith the cluster radiuR ass,«RP. The fractal dimensio® obtained lies
between 1.86 and 1.88 and is independent of the size xafitis value is in good agreement with the 2D
theoretical fractal dimension which is equal to 91/48.
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[. INTRODUCTION universal law¥ «(p—p.)?, whereW¥ represents a physical
property, such as the conductivity. The expongris insen-
The short-range correlated percolation process has begifive to the microstructure of the composite.
extensively studied for more than half a century. This is due The above description implies that two assumptions are
to its effectiveness in solving problems in disordered system#ade in the classical percolation model. The first one is the
in a variety of scientific and engineering fields, such as th&rdered lattice, which means the positions of the particles are
fluid flow in porous media, the forest fire spread, and thePreéknown, and what is not known is which particles are con-
transportation networkl,2]. Perhaps the most important ap- ductive. The second one is that all the particles have the
plication of the percolation process is in the study of theS@me size. In practice, however, there are many disordered

physical properties and the phase transition of composite m&YStems in which both the positions and sizes of the particles
terials[3—8]. A straightforward example is a binary compos- are randomly distributed, such as the amorphous composites

ite composed of electrical conductive elements and insulatand the compacts with two or more types of granular pow-

: I ts. As th I fracti £ th ducti ders. It has been found for many years that, in a compact of
Ing elements. AS the volume fractign ot the CONAUCIVE — o mixtyre of metallic powder and polymeric powder, lower
elements is lower than a critical value the composite behaveélectrical conductive percolation threshaig (herep, is the
as an insulator. Ap approaches a critical valyg, the com-

4 - ' ) X volume fraction of metallic powdgrcan be obtained by in-
posite experiences an insulating-to-conducting phase transdreasing the particle size ratoof the polymeric powder to

tion. This is attributed to the formation of a cluster of the the metallic powdef15—17. Understanding the effect of
conductive elements that spans the composite. The criticgJn p, will allow material scientists to optimize the physical
valuep, is referred to as the percolation threshold. properties by adjusting the compositions of the materials,
Monte Carlo simulation technique is a powerful tool in such as conductive polymgt8], adhesive$19], and ceram-
solving the percolation problem and many simulation modelscs [20]. A few analytical models have been developed to
have been developel®-14]. In classical site percolation predict the effect of on the percolation threshoful, of the
models, each site of an ordered lattice, e.g., square, honegompacts with binary particlelsl5,17,21,22 In the model
comb, or triangle in two dimension@D), and diamond or  developed by Malliaris and Turnéd5] it is assumed that
simple cubic in 3D, is randomly occupied by a conductiveeach large polymeric particle is covered by a monolayer of
particle with probabilityp or by an insulating particle with metallic particles. The percolation threshold predicted by this
probability 1—p. The main aim of the simulation is to find model is significantly lower than that obtained by experi-
the percolation threshold., the lowest volume fraction of ments. The other models are modifications of this model. A
the conductive particles, at which the largest cluster of th&ommon assumption made in these models is the segregated
conductive particles spans the entire simulation domain. Faglistribution of the metallic particles, which means that the
2D square lattice site percolation it has been obtained bymall metallic particles are only distributed in the neighbor-
many thatp. is about 0.593, and for triangular lattiqg  hood regions of the surfaces of the large polymeric particles.
=0.50[1,2,12. At percolation threshol@, the cluster struc- Therefore, these models are only valid under the condition
ture can be characterized by several geometrical parametenss-1. Another shortcoming is that these models cannot pro-
such as the cluster size and number, the cluster radius, angtle the structure information in detail. Even with a high
the correlation length. Near the percolation threshpld value of\, aggregates of fine particles have been observed in
some of the physical properties of a composite will obey thehe conductive adhesijd9]. Thus we may conjecture that,
in the compact of binary particles, ¥ is not too far from
one, both large and small particles should be randomly dis-
*Present address: Medway School of Engineering, University ofributed without bias. The percolation problem of such sys-
Greenwich at Medway, Chatham Maritime, Kent ME4 4TB, U.K. tems has been rarely reported in the literature.
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FIG. 1. Random packings and
the largest clusters,.: (@ A
=2, n=2000 p=0.480, Spax
=731; (b) A=2, n=2000, p
=0.499, 5,x=1286; (c) A=5, n
=1500, p=0.391, S,,,,=609; (d)
A=5, n=1500, p=0.412, S; max

=1103.
@ ®) © @
We have developed a Monte Carlo simulation model that m(Ng+nA?)
can be applied to investigate the percolation process of 2D T 2

and 3D random packing of binary particles and to character-

ize the cluster structure at the percolation threshldThis < ihor0 are many overlaps among the disks. Then a relax-

moge: cg;npzletgly dlrl]‘ferrls frotml the contlllnuurg tpercolaltlon ation iteration is applied to reduce or eliminate the overlaps.
models[23-26 in which particles are allowed to overlap After the relaxation iteration the disks are more uniformly

each other _to form percola_tmg .cl_usters. In Sec. Il we Intro'distributed, and the mean overlap reduces to a stable value.
d_uce the simulation tec_hmque, in Sec. Ill we present Z.DAccording to the mean overlap value, the packing aréés
simulation rgsults a'f‘d discussion; and finally we Surnrnarlz(:éxpanded which leads to the decrease in the packing density
the conclusion of this study. ®. By repeating the relaxation and expansion procedures we
can finally obtain the overlap-free packing. Figure 1 shows a
Il. THE SIMULATION MODEL few final configurations of the random packi.ngs vyith differ-
. . ) ~ent values ofp and \. In Fig. 1 each configuration only
The simulation model is composed of two parts. The firstinvolves 1500 or 2000 disks, which is only for the conve-
part is the generation of a 2D random packing of disks, anghience of observation. Readers interested in details of the
the second part is the identification of clusters. For converandom packing model are referred to REZ7]. Statistic
nience, we assign the diameter of the small disks to be ongsts show that, for>1, the packing is random, homoge-
unit; then the diameter of large disks equals the size patio neous, and isotropic although triangular orders exist in the

The area fractiorp of small disks is given by scale of a few disk diameters that can be observed in Fig. 1.
For A=1, previous studies showed that the random packing

N density® falls in the range of 0.82—0.28], and that as the
p= W (1) packing density increases the equal disks intrinsically tend to

the triangular orders; thus polycrystalline structures are more
likely to be attained than completely random structU&3.
whereng is the number of small disks, amg is the number  The packing density we obtainedds=0.865, which is sig-
of large disks. The total number of disks=ng+n,. As \ nificantly higher than the square packing density- 0.785
=1, the definition ofp is identical with that of the classical and lower than the triangular packing density=0.907. In
site percolation models, which is the ratio of the occupiedthe packing we also found that about 46% of the disks have
sites to the total sites. Thus we can compare the result afix nearest neighborshe nearest neighbor number of trian-
random packing with the result of ordered lattice packing. Togular packing compared with that only less than 13% in the
avoid confusion, it is necessary to point out that this defini-random packing withh>1. Therefore, it is suitable to clas-
tion is different from that of the continuum percolation sify the packing we obtained fox=1 to polycrystalline
model, which is the ratio of the area of the total disks to thestructure.
area covered by the disks. Two steps are involved in the identification of the clusters.
For given values op, \, and the total number of disks  The first step is to count the nearest neighbors for each disk.
we randomly assigmg, which is an integer nearest to To do this we examine the center-to-center distance between
npA?/(1+ pA?—p) obtained from Eq(1), small disks and any two disks of the same type to detect if they touch each
n—ng large disks. The initial positions of the disks within a other. In the second step starting from an arbitrary seed disk
square with initial area of.? are also randomly generated we count its neighbors and put them in a seed list; then we
that obey uniform distribution. The simulation is started with sequentially take the disks from the seed list and count their
a very high packing density neighbors, which are put in a new seed list. A disk nayd
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FIG. 2. Sketch of identification of clusters. P

. FIG. 3. Effect of system size d&'(p) (equal disks
often) belong to the nearest neighbors of two or more seeds,

and two seeds may also be of the nearest neighbors to ea .
other. Thus to avoid any disk to be repeatedly counted, afte$80 samples and counted the percent@gép) of those in

counting each disk for the first time we label it, and after-WhiCh .there' exi;t perco'lating'clusters'. Th? valuesz6{p)
ward we only count the unlabeled disks. By this from- in vertpal direction and in horizontal direction were counted,
neighbor-to-neighbor propagation we can identify all the'€SPectively, and them averaged. kor 1, at each value gf

disks belonging to the same cluster. This process is sketchdlf® 9enerated _‘f‘,o cor?figlljrations each involving 20 000 SiSkS-
in Fig. 2 in whichx = 1. The white and dark circles represent | Nen we identified the cluster number and sizes in each con-

the two types of disks, respectively, and we are concerne 'guration,_ and counFed the percenta@e(p). In our simu-

with the white circles only. The disk marked by 1 repre- ation the Increment ip was 0.005, Wh'Ch allows reasonably
sented the first seed, those marked by 2 are the nearest nei&?—curat,e .est|r.nat|0n of the pe(colatlon threshold. :

bors of the first seed, and their nearest neighbors are marked For finite-size syfs,tems at given occqpamnyle probabil-

by 3 and so on. By this process one can see that any didR/ G(P) of the existence of percolating cluster has been
marked byi + 1 is approached from one of those marked by'®€Ported in several investigatiori80-32, which suggest

i. One can also see that any disk belonging to this cluster cai@t at the percolation threshofii, in a given direction the

be counted and only counted once because we have labeledfoPability G(pc) —0.5 asL —c. Lee and Torquato studied
after it was counted for the first time. As all the disks belong-2D continuum percolation of uniform disks with rigid cores
ing to the same cluster have been counted, we have the sidd penetrable shells, and their rgsult a]so implicates that as
of this clusters=1+n,+ns+---+n,,, wheren, is number L>7 G(Pc) approaches 0.§see Fig. 3 in33]). Thus we

of disks marked by in Fig. 2. After finishing the counting of M&y conjecture thaG(p) is independent of the packing
one cluster we start from an arbitrary unlabeled digte lattices. _To verify the conj-ecture,. we .also simulated the site
unmarked white circles in Fig.)2o count the size of another Percolation of square lattices with sizes of *0000, 140

new cluster by the same process described above. Finally wé 140, and 20&200. At each value op we took 500

can obtain the total number of clusters and their sizes in thé@MPples. Figure 3 shows the results of square lattice pack-
random packing. Figure 1 also shows the largest cluster§9s and random packings of equal disks. It is seen that for
corresponding to the random packings. For each cluster weduare |/¢’:1'[th(?$ the curves nearly cross at the same point at
simply examine its horizontal and vertical spanning distance¥/hich G(p) is about 0.5 angb is about 0.593, which is the

to identify if it percolates the space covered by the disks irSite percolation threshold.. For the random packings of
either one or in both directions. equal disks the trend similar to that of the square lattice can

also be observed, that is ptjust below 0.55 the values of
G'(p) with different sizes all approach 0.5. This supports the
lll. RESULTS AND DISCUSSION conjecture that it is independent of the packing lattice that, at

Applying the above Mont Carlo model we investigated the percolation threshold.G'(p), approaches 0.5. We may
the effect of\ on the percolation thresholal, and the struc- @IS0 conjecture that this relationship is applicable to the sys-

tural properties of the clusters pf of the random packing. tems withA# 1. Thus, corresponding 18’ (p) =0.5 we can
estimate the percolation threshgdd as shown in Fig. 4.

Zallen[34] suggested that in the random packing of equal
spheregdisks in 2D, as the packing densit and the mean

For A =1, we generated three configurations with 10 000, nearest neighbor numbeincrease the percolation threshold
20000, and 40000 disks. The aim of using different numbep, decreases. Fox=1, we know that for square packing
of disks is to examine the potential effect of the finite systemd®=0.785,z=4, andp.=0.593; and for triangular packing
sizes. For each configuration at a given valueafe took & =0.907,z=6, andp.=0.500. The packing density and the

A. The percolation threshold
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FIG. 4. Effects ofx andp on G’ (p).

N+1, the relative increase in the perimeter ratio ia,1/

mean nearest neighbor number we obtained\ferl ared which becomes insignificant at a large valueotherefore,
=0.865 andz= 4.87, respectively, both lying between that of the decrease ip. also becomes insignificant. We may, from
the square and the triangular packings. Therefore, the perc#l€ above argument, speculate that there exists a linpt, of
lation threshold should also lie between that of the squar@\—. However, we are unable to quantitatively estimate
and triangular packings. The above argument suggests th#tis limit from the results we have obtained.
the percolation thresholdp.=0.550+0.005 for random Comparing the random packings and largest clusters in
packing is reasonable. Fig. 1, we can observe that in the random packing there exist

From Fig. 4 we can observe that the percolation thresholégolated clusters of small disks surrounded by the large disks,
p. decreases with the increasexinTable | lists the values of and the lower thep the more the isolated clusters. Statistics
p. corresponding to the values af The effect of\ on p. showed that at the percolatlon threshpldthe largest _clus-
obtained by this random packing model is in qualitativet€rs averagely contain qbout 56% of the total small dlsks. We
agreement with that of the 3D segregation modelst@n aIsp observe that in the largest clusters there exist t.an-
[15,17,21,22 We also observe that near= 1, the effect of g!mg dISkS. that dp not carry the current when a potential
the increase i on p,, is more significant than that asis far ~ difference is applied at two opposite sides of the random
from 1. For example, as increases from 1 to 2, the decrease Packing. _ .
in p is about 0.065; while a& increases from 4 to 5, the ~ As defined by Eq(1), the percolation threshold, is the
decrease i, is only about 0.013. A reasonable explanationrat'o of the area of _small disks to the area of total _dlskspAt
may be given by the following argument. In a random pack-We may also examine the effect ion the percolating space
ing of binary disks, we may expect that the larger the sum oPY defining another percolation threshqid as the ratio of
the perimeters of the small disks the higher the probabilitthe area of the small disks to the area covered by the disks
for the small disks to form a percolating cluster. With thethat is
same area of small disks and large disks thans/4
=n,m\?%/4, the sum perimeters of the small disks and the
large disks arengzm andn;w\, respectively, from which we
get the ratio of the sum perimeters of small disks to Iargel_h_ o :
disks to be\. Thus, first we see that the ratio of the sum | IS définition is similar to that of the continuum percola-
perimeters of small disks to large disks increases with 1ON- Observing Eas(1)—(3), we havepc=p.®, here<’I> is
which leads to the decrease in the percolation threshotsf ~ the final random packing density at. @, p., andp. as
the small disks. Second, as the size ratio increases frepn ~ functions ofk are shown in Fig. 5. One can observe thakas
increased, also decreases, which means that, with a larger
value of \, using less small disks can generate percolating
network.

To further examine the effect of and verify the above
results, forh =2 we studied the percolation threshold of the

. mng
Pe=712" (3

TABLE |. Effects of disk size ration on percolation threshold
and on cluster structure.

» Pe P ¢ large disks. The area fraction of the large disks is given by
1 0.550 1.874 3.649

2 0.485 1.872 3.438 LS 4

3 0.437 1.879 3.308 P e @

4 0.413 1.864 3.245

5 0.400 1.861 3.104 Simulation results show thap. lies between 0.650 and

0.660, and by the transformatiqri = p.® we obtain thap/
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lies between 0.565 and 0.574. Comparing the valuep.of s T s
and p. of the large disks with that of the small diskg 1o A=1, p,=0.550, 5,=3.649R" ¥4
=0.485 andp,=0.420 one can obviously see the significant 900 45, p.=0.400, 5.=3.104R"* 20
effect of the disk size ratia on the percolation threshold. In %
practice, such results may provide many benefits to the de- -4
sign of composites. By selectingone may save the valuable 3 B
metal component, reduce the mass density, adjust the me- & 7.0 &
chanical, electrical and thermal properties of the composites. - 4
From the percolation thresholgs obtained with different 6.0 5
system sizes, we can estimate the percolation thresipglds &
of infinite system. For the random packings of equal disks 5.0 9'
with different system sizes, see Fig. 3, we use the valugs of ®)
corresponding to the percolation probabilitieg’(p) 4.0
=0.1,0.2,0.3,...,0.9, to calculate the widthof the critical 1.0 2.0 3.0 40 45
transition region by the equation Ln(R)

™)

A2=(p2>—<p)2, ) FIG. 6. Fractal dimensions of clusters at percolation thresholds.
wheres is the cluster size, the number of disks belonging to
&he same cluster, ardj; is the distance between two disks.
andL have the same dimension, which equals one. Near the
s percolation thresholg, the cluster size. can be scaled with
Al ™77, ®)  the cluster radiuR as

where( ) means average. Then we can determine the corr
lation length exponent from the scale

In the random packing, the values bfcorresponding ta s.*xRP, (p=p.,s:>1), 9)
=10000, 20000, and 40000 are 95.3, 134.7, and 190.5 re-

spectively. From Egs(5) and (6), we obtainy=1.37. Itis  \here the exponer® is called the fractal dimension. Perco-
close to the exact 2D correlation length exponent, 4/3. TWqgion theory proves thdd is a universal parameter that it is
reasons make it impossible to determinavith A>1. The independent of the packing lattices, and in the litnitco,
first one is due to the small number of samples, 40 at each —g91/48-=1.896 in 2D lattices. and is approximately
point of p, which will give a poor result. The second is that gqya| 2.5 in 3D lattice§l]. Lorenz, Orgzali, and Heuer in-
we fixed the system siza to 20000, thus, at given, L gicated that this universal law is also applicable to the con-
decreases gs increasesv is believed to'be a universal pa- tinyum percolation models of binary disk&3]. Thus, we
rameter. Therefore, we use=4/3 to estimate the effect of v conjecture that, in the random packing of binary disks,
the finite system size on the percolation threshold. It is suggjs universal law will also be tenable. At the percolation
gested[31,39 that, with free boundary, the percolation {hresholds, as listed in Table I, for each valueofve cal-
thresholdp, based upon the crossing probability convergesjjated the values R of all the clusters. Foh =1 and\

to pe.. of infinite system according to =5, the symbols in Fig. 6 show the relationship between
Y i Ln(s;) and LnR) both are average values in the given in-
Pc— Pex*L =L (1) tervals. To determine the fractal dimensién we applied

least-square-error regression to fit the dateste aRP in

Note that Fig. 4 shows results with=40 000 forn=1, and  which only the clusters.>100 were taken into account. The
n=20 000 forA >1, thus the minimal value df is about 170 values ofe andD corresponding to the values nfare also
with A=2. Therefore, the convergenpg— p... is in the or-  listed in Table |. Forn=3, « andD are the averages of the
der of 104, which can be neglected as we estimapedo  values obtained witp=0.435 and 0.440, and for=4 they
the order of 103, Renormalization-group and some other are the averages of the values obtained with0.410 and
methods estimate the convergence in a very slow way a8.415. First we can observe that for all values\pthe clus-
Pe—Pex*L . The fast convergence is given [85] as ters have fractal dimensiod in the range of 1.861—1.880,
Pe— Pe®L "2 for square lattice with periodical bound- andD is independent ok. The values oD obtained in our
ary. simulation are in good agreement with the theoretical value
D =1.896 of the ordered lattice percolation and with that of
the continuum percolation models of binary di$RS]. This
agreement supports our conjecture that, at the percolation

To examine the effect ok on the cluster structure we thresholdp,, the cluster dimensioB of the random packing
employ the cluster radiuR, which has been used by many of binary disks obeys the universal law. We may also expect

B. The fractal dimension

[1,23 and is defined as that, in the limitL—o, D would approach the theoretical
2 value of 1.896.

JR2= d_lzl (8) Another important finding in our simulation is that, ob-

7 S serving Table | the parameter decreases with the increase
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in \. From the scaling equatios,=«RP we see that with square and triangular packings, which requires that the per-
the same cluster sizs,, the decrease im results in the colation threshold of the random packing must also lie be-
increase in the cluster radilR as shown in Fig. 6. This tween the percolation thresholds of the two ordered pack-
indicates that with the same sizg, the cluster in the ran- ings. Our result fulfils this requirement, which supports our
dom packing with higher size ratiocan span larger area. In conclusion about the effect of on p.. Cluster structure
another words, to span the same area the clusterssize  Characterization confirmed that, at percolation thresipeld
smaller with higher than that with lowen. This observa- the fractal dimensioD of the clusters is independent nf

tion is identical with the fact that the percolation threshpjd ~@nd is in good agreement with that of the classical percola-
decreases with the increaseNnFigure 6 shows the trend of tion model and with the continuum percolation model. This
the divergence of the simulation values from the fitted valueshay suggest that, as is found in classical percolation, near
for small and large clusters. As indicated by the conditionthe percolation threshold, the physical properties of the ran-
Eq. (9) is not applicable to small clusters. While the finite dom packing obey the universal lage<(p—pc)?, in which
packing ared.? restricts the extension of the largest clusters the exponeng is insensitive to the details of the microstruc-
as shown in Fig. 1, which leads to the cluster radit® be  ture of the packing. The simulation results may provide ben-

smaller than it should be in an infinite system. efit in optimizing the physical properties of the composites
by adjusting the compositions, such as to gain good conduc-
IV. CONCLUSION tivity meanwhile still retaining the high resistance to wear of

the conductive ceramics. The configurations generated by
Monte Carlo study on the percolation and cluster structurehis model can be used to study the hopping transport prob-
of the random packing of binary disks has been reported ifems in amorphous solids. With simple modification, this
this paper. Results showed that the disk size ratgignifi-  model has been applied to 3D percolation. Further work is
cantly influences the percolation threshgd of the small  focusing on the identification and elimination of the tangling
disks that the increase i leads to the decrease jp. For  disks in the percolating cluster. This will allow us to build up
A=1, the packing density and the average number of than effective resistance network analogous to the percolating
nearest neighbors in our study both lie between that of theluster.
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